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ABSTRACT 

We have implemented a global sensitivity analy-
sis module into iTOUGH2. While a local sensi-
tivity analysis perturbs parameters from a single 
set of reference values and computes the deriva-
tive of system responses, a global sensitivity 
analysis explores the entire parameter space, 
providing more robust sensitivity measures as 
well as identifying the presence of nonlinearity 
in system responses and interactions among 
parameters. The new module includes two 
global sensitivity methods: the Morris and Salt-
elli methods.  
 
To demonstrate this new capability, we coupled 
this module with two forward models related to 
CO2 sequestration: (1) a high-resolution reser-
voir-scale model for a hypothetical CO2 storage 
project and (2) an analytical model for compu-
ting the transient head change induced by injec-
tion/ extraction/ leakage through multiple wells 
in a multilayered system. Our results illustrate 
the characteristics of each sensitivity method. 
The local sensitivity is sufficient to identify 
dominant parameters and useful for understand-
ing the system. The Morris method can identify 
nonlinear/interaction effects as well as provide 
more robust sensitivity measures with relatively 
small computational cost. The Saltelli method 
can provide more rigorous and quantitative 
sensitivity measures in the context of uncertainty 
quantification, although it comes at a high 
computational cost. 

INTRODUCTION 

iTOUGH2 (Finsterle, 2010) has been developed 
first as an inverse modeling and parameter 
estimation (PE) tool for hydrogeological appli-
cations, which works with the TOUGH2 flow 
and transport simulators as well as other simu-

lators through the PEST protocol. Various 
modules have been implemented, such as the 
uncertainty analysis module for Monte-Carlo 
simulations, the coupled hydrogeological-geo-
physical inversion module, and various other 
tools. 
 
Many studies (e.g., Finsterle et al., in press) have 
identified essential tools for hydrological 
modeling under uncertainty, and also for real-
world hydrological projects that start from site 
characterization and lead to prediction. They 
include parameter estimation, uncertainty 
analysis (UA), sensitivity analysis (SA), data-
worth analysis, and experimental design. With 
the first two already implemented and tested 
intensively, we consider iTOUGH2 to be one of 
the most effective, comprehensive tools for 
model development and analysis. 
 
The ability to support a formal sensitivity analy-
sis is a key component in such a software tool, 
since there is a strong interaction between SA 
and other components of the workflow. Identi-
fying sensitive or important parameters is criti-
cal (1) to check whether a given dataset has 
sufficient information to determine a parameter 
given the uncertainty of other parameters in PE, 
(2) to identify the most effective data locations 
and timing in the experimental design, (3) to 
determine how to allocate limited resources for 
estimating each parameter as part of a data-
worth analysis, and (4) to reduce the number of 
parameters to be varied/estimated and hence to 
reduce the computational burden in PE and UA. 
 
In addition, we believe that the SA tool can be 
used not only for selecting the important param-
eters, but also for improving the understanding 
of the system. For example, identifying the 
positive or negative effects of each parameter 
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will be important for determining safety margins 
in engineering systems. The time profile of 
sensitivity can identify which parameter influ-
ences the model output at which time period. We 
can also identify interactions among parameters. 
 
In the iTOUGH2 SA module, we have, in addi-
tion to the existing local sensitivity method, 
implemented two global sensitivity methods—
that of Morris (Morris, 1991) and Saltelli 
(Saltelli et al., 2008). These global methods 
provide more robust sensitivity measures as well 
as identify the nonlinearity in system responses 
and interactions among parameters.  
 
The objectives of this study are to (1) introduce 
the global-sensitivity-analysis methods, (2) 
compare the three sensitivity methods in terms 
of interpretation and computational cost. To 
demonstrate the utility of the iTOUGH2 sensi-
tivity analysis module, we used two hydrological 
problems related to CO2 sequestration: a high-
resolution basin-scale model for a hypothetical 
storage project (using TOUGH-MP) and an 
injection/leakage-induced pressure model (using 
an analytical solution). Since the latter model is 
computationally inexpensive, we use it to 
explore the computational cost of the Morris 
method in more detail. 

METHODOLOGY 

In this section, we introduce the global sensitiv-
ity methods. Although each method is docu-
mented in detail in Morris (1991) and Saltelli et 
al. (2008), we describe them briefly here for 
completeness. We denote a set of parameters by 
{xi| i=1,…,k} (the number of parameters is k) 
and a scalar output of a model by y, which is a 
function of {xi}; y = f({xi}).  

Local Sensitivity Method 
The local sensitivity is defined as a partial deriv-
ative, i.e., the change in an output variable 
caused by a unit change in each parameter from 
the reference value. When we have a numerical 
model, we can compute the derivative by 
changing each parameter by a small increment 
!xi from the reference parameter values xi

* and 
computing the difference in the output. The 
scaled sensitivity is the derivative scaled by the 
standard deviation of parameters and measure-

ment errors. The scaled, dimensionless sensitiv-
ity is defined as: 

Si
local =

! x

! y

!y
!xi xi*

=
! x

! y

f (x1*,.., xi *+"xi,..)# f (x1*,.., xi*,..)
"xi  

where !x is the standard deviation of the param-
eter, and !y is the standard deviation of the 
model output, reflecting its measurement error 
or acceptable mean residual in an inversion. 

Morris Sensitivity Method 
In the Morris one-at-a-time (OAT) method 
(Morris, 1991), the parameter range— normal-
ized as a uniform distribution in [0, 1]—is 
partitioned into (p–1) equally sized intervals, so 
that each parameter takes values from the set {0, 
1/(p–1), 2/(p–1), …, 1}. From the reference 
point of each parameter randomly chosen from 
the set {0, 1/(p–1), 2/(p–1), …, 1– !}, the fixed 
increment ! = p/{2(p–1)} is added to each 
parameter in a random order to compute the 
elementary effect (EE) of each parameter, which 
is the difference in output y caused by the 
change in the respective parameter. k+1 runs are 
necessary to complete one path, which is to 
change each parameter once from one set of 
reference values. By having multiple paths (i.e., 
multiple sets of reference parameter values and 
multiple, random orders for changing each 
parameter), we have an ensemble of EEs for 
each parameter. We can compute three statistics: 
the mean of EE, the variance in EEs, and the 
mean of absolute EEs (mean of |EE|). The mean 
EE can be regarded as a global sensitivity meas-
ure, and is used to identify noninfluential 
factors. The variance of EEs is used to compute 
the standard error of mean (SEM) for identifying 
nonlinear or interaction effects. 

Saltelli Sensitivity Method 
While the local and Morris sensitivity is differ-
ence-based, the Saltelli method is variance-
based. Saltelli et al. (2008) defined the sensitiv-
ity by V[E[Y|Xi]]/V[Y] for parameter 
importance, where E[•] and V[•] represent mean 
and variance, respectively. Conceptually, this 
measure quantifies the contribution of each 
parameter to the uncertainty of the output. In 
addition, Saltelli et al. (2008) defined the total 
sensitivity by V[E[Y|X-i]]/V[Y], where E[Y|X-i] 
represents the mean of Y conditioned on all the 
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parameters but Xi. The total sensitivity is used to 
identify unimportant parameters. We can 
compute these two measures–sensitivity and 
total sensitivity–using the Monte-Carlo 
integration described in Saltelli (2008).  

DEMONSTRATION PROBLEM SETUP 

Reservoir-scale CO2 Migration Problem 
The reservoir-scale CO2 migration model was 
developed based on a geological study in the 
Southern San Joaquin Basin, California, using 
the datasets obtained at many oil fields in that 
region (Birkholzer et al., 2011; Zhou et al., 
2011; Zhou and Birkholzer, 2011). The domain 
includes 12 discontinuous or continuous 
formations, extending 84 km in the eastern 
direction and 112 km in the northern direction. 
The domain also includes several faults, which 
are known to be near-impermeable sealing faults 
at large depth.  
 
The Vedder Formation—considered as the 
injection formation—dips upward towards a 
shallow outcrop area located along the eastern 
model boundary, at an average slope of 7 
degree. The overlying Temblor-Freeman Shale 
(TF Shale) is considered a suitable caprock for 
stratigraphic containment of the injected super-
critical CO2. We also consider six alternating 
sand/shale layers—Vedder Sand (V Sand) and 
Vedder Shale (V Shale)—in the Vedder 
Formation, based on the datasets. At the injec-
tion well, the Vedder Formation is 400 m thick, 
and its top elevation is -2,751 m. The cap rock 
(TF Shale) is about 200 m thick. The plan view 
of the Vedder Formation is shown in Figure 
1(a). 
 
We used the massively parallel version of 
TOUGH2  (Zhang et al., 2008) with the ECO2N 
module to simulate injection and migration of 
supercritical CO2 in the brine system. The 
simulation time includes an injection period of 
50 years with an injection rate of 5 Mt per year, 
and a post-injection period of 150 years. In this 
study, the 3D mesh consists of 64,214 elements, 
the number of which falls in between that of the 
fine mesh (Zhou et al., 2010; Zhou and 
Brikholzer (2011) and that of the coarse mesh 
used in Birkholzer et al. (2011). Figure 1(b) 
shows the plan view of the numerical mesh.  
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(a)    (b) 

Figure 1. (a) Plan view of the Vedder formation and 
the faults, and (b) Plan view of the 
numerical domain with mesh. The red dot 
is the injection location. 

 
(b) 

Figure 2. Estimated depth-dependent (a) V Sand 
permeability and (b) V Sand porosity. The 
blue dots are the data values, the solid red 
line is the estimated parameter value, and 
the dotted read lines are the uncertainty 
bounds (± two standard deviations). 

 
In our SA, we varied five properties (permeabil-
ity, porosity, pore compressibility, van Genuch-
ten ! and m) of three geological units (V Sand, 
V Shale, TF Shale), so that we have a total of 15 
parameters. For the V Sand permeability and 
porosity, we estimated the depth-dependent 
parameter values and their uncertainty ranges 
using the available datasets (Figure 2). For the 
rest of the parameters, the reference parameter 
values are shown in Table 1. The range of 
parameters in this study is one order of magni-
tude in permeability, a factor of five in pore 
compressibility, 30% in porosity and van 

(a) 
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Genuchten m, and half an order of magnitude in 
van Genuchten ". As performance measures, we 
consider various system responses, such as CO2 
saturation and pressure buildup at various 
locations, and CO2 plume extent. For demon-
stration purposes, we chose one performance 
measure; CO2 saturation (SCO2) at 1.78 km east 
from the injection point.  
 

Table 1. Reference parameter values: horizontal 
permeability kh, anisotropy ratio kv/kh, porosity #, 
pore compressibility "p, van Genuchten " and m 

 TF Shale V Sand V Shale 
kh, mD 0.002 *dep-dep. 0.1 
kv/kh 0.5 0.2 0.5 
# 0.338 *dep-dep. 0.32 
$p,10-10, Pa-1 14.5 4.9 14.5 
", 10-5, Pa-1 0.42 13 0.42 
m 0.457 0.457 0.457 
* Depth-dependent values shown in Figure 2. 

Leakage-Induced Pressure Problem 
A semi-analytical model was developed by 
Cihan et al. (2011) to describe the transient 
pressure changes caused by injection or extrac-
tion activities in a multilayered aquifer system. 
It models flow through aquitards (diffusive flow 
or diffusive leakage) as well as flow through the 
leaky wells (focused flow or focused leakage). 
In the CO2 storage system, this model has been 
used to predict the pressure disturbance caused 
by the CO2 injection. Also, this model has 
become the basis for developing a system to 
detect possible CO2 leakage through wells or 
faults, since the pressure propagates much faster 
than the CO2 plume. (We refer to Cihan et al. 
(2011) for a more detailed description and a 
discussion of the assumptions.) 
 
In this study, we consider a three-layered system 
that consists of the reservoir (injection layer), 
the aquitard, and an upper aquifer, as shown in 
Figure 3. Each layer is assumed to be a homoge-
nous and isotropic medium with uniform thick-
ness and infinite extent. We also assume that the 
leaky well is 2000 m away from the injection 
point.  
 
In SA, we perturbed the following parameters: 
hydraulic conductivity K and storativity S for the 
reservoir, the aquitard and the aquifer, and the 
hydraulic conductivity of the leaky well. The 

total number of parameters is seven. Reference 
parameter values are shown in Table 2. The 
parameter range is one order of magnitude in 
hydraulic conductivity, and a factor of five in 
storativity. As a performance measure, we are 
interested in the pressure buildup at a fixed point 
in the overlying aquifer, which corresponds to 
the leaky well location.  

 
Figure 3. Conceptual model setup for the pressure 

leakage problem. 

Table 2. Reference parameter values: hydraulic 
conductivity K and storativity S 

 Aquifer Aquitard Reservoir Well 
K, m/s 2.00E-1 2.00E-6 2.00E-1 2.00E+5 
S, 1/m 1.88E-6 1.47E-6 1.88E-6 N/A 

RESULTS AND DISCUSSION 

Reservoir-scale CO2 Migration Problem 

Local sensitivity 
The local sensitivity was computed using 16 
simulations. Figure 4(a) shows the time series of 
local sensitivity for CO2 saturation (SCO2) at a 
fixed point. There are three dominant parame-
ters: V Sand permeability, porosity and van 
Genuchten m. All three curves have two spikes, 
which correspond to the plume arrival and 
departure. Higher permeability and m lead to 
higher plume/brine mobility, which leads to 
positive sensitivity at the plume arrival (i.e., 
earlier arrival and higher SCO2) and negative 
sensitivity at plume departure (i.e., earlier 
departure and lower SCO2). The large porosity 
means there is more brine to be displaced at the 
arrival and more CO2 at the departure, so that 
porosity has the opposite effect of permeability 
and m.  
 
The pore-size distribution index m has a large 
impact at the arrival but not at the departure. 
This is attributed to the specific implementation 
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of the two-phase model in the current version of 
TOUGH2-MP, which uses the van Genuchten 
model for relative brine permeability (klr) and 
capillary pressure, and the Corey model for 
relative gas permeability—so that the relative 
gas permeability does not depend on m (Pruess 
et al., 1999). Since the derivative of relative 
brine permeability with respect to m (%kl/%m) 
increases in absolute magnitude towards full 
brine saturation, m is more influential near full 
brine saturation and hence at plume arrival. This 
result may change once the full van Genuchten 
model and the hysteresis model (Doughty, 2007) 
are implemented in TOUGH2-MP, which makes 
m dependent on gas relative permeability. The 
point to address here is that the sensitivity analy-
sis is useful in identifying and understanding an 
effect that is potentially an artifact of model 
implementation. 
 
CO2 saturation at other locations (not shown 
here) also had similar profiles and showed 
significant sensitivities to the same three param-
eters. This result may support the development 
of simple analytical or semi-analytical solutions, 
or decoupled reservoir-only CO2 migration 
models. For example, we found that the van 
Genuchten " has a negligible effect on far-field 
CO2 saturation, consistent with some of the 
analytical studies that neglect the capillary pres-
sure (e.g., Nordbotten et al., 2009). We also note 
that this conclusion is applicable only to the CO2 
saturation; we observed significant sensitivity of 
pressure buildup to other parameters, such as V 
Sand pore compressibility and TF Shale perme-
ability. 

Morris sensitivity 
In the Morris method, the EEs were computed 
by four partitions and ten paths. The total 
number of simulations was 160. Figure 4(b) 
shows the time profile of mean EE from the 
Morris method. Compared to the local sensitiv-
ity in Figure 4(a), the spikes are smoothed out 
over time, since the plume arrival/departure time 
is more distributed. In terms of importance 
ranking and sign of effects, we draw a conclu-
sion similar to the local sensitivity analysis, with 
the same three parameters being identified as 
most influential. However, there are some 
differences from the local sensitivity: the poros-
ity effect is more prominent at early times, and 

the V Sand permeability becomes dominant in 
the post-injection period.  

  

 

 

 
Figure 4. SA results for the reservoir-scale CO2 

migration problem: (a) time profile of the 
local sensitivity, (b) time profile of the 
Morris mean EE, (c) crossplot of Mean 
EE and SEM of SCO2 at 20 years from the 
Morris method, and (d) time profile of 
Saltelli sensitivity. In (c), the solid black 
lines correspond to (Mean EE) = ± 2SEM.  

Figure 4(c) shows the cross-plot of mean EE and 
standard error of mean (SEM) at one time (20 
years). In this figure, parameters with higher 
SEM, i.e., those that are closer to the grey solid 
lines (Mean EE = ±2SEM) exhibit stronger non-
linearity or interaction effects. The reservoir 

(b) 

(a) 

(c) 

  V Sand permeability 
  V Sand porosity 
  V Sand m 

  V Sand permeability 
  V Sand porosity 
  V Sand m 

(d) 

  V Sand permeability 
  V Sand porosity 
  V Sand m 
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permeability and m have large mean EE and low 
SEM values; the porosity is close to the black 
line, indicating nonlinearity or interaction 
effects. In general, we observe that the parame-
ters with higher SEM have different interpreta-
tions or importance rankings between the local 
and global sensitivity analyses. 

Saltelli sensitivity 
Based on the Morris method, we chose five 
parameters for the Saltelli sensitivity (V Sand 
permeability, porosity, compressibility, m, and 
TF Shale permeability). We computed the 
Saltelli sensitivity using 840 realizations. Figure 
4(d) shows the time profile of Saltelli sensitivity. 
The sensitivity is normalized by the variance at 
each time slice, so that there are no peaks such 
as those that appeared in the Morris sensitivity 
in Figure 4(b). The sum of the sensitivity of each 
parameter, however, does not become one, since 
there exist nonlinear or interaction effects 
(Saltelli, 2008).  
 
Based on this figure, the V Sand van Genuchten 
m accounts for about 70% of the total variability 
of the output at time 30–50 years, and the V 
Sand permeability accounts for about 70% after 
100 years (most of the post-injection period). 
The qualitative interpretation and ranking, 
however, are the same as the Morris mean EE.   

Leakage-Induced Pressure Problem 

Local sensitivity 
In the same manner as in the reservoir model, 
the time profile for scaled sensitivity is plotted 
in Figure 5(a) for 10 years and (b) for 1 year.  
 
In Figure 5(a), we can see that the aquifer and 
reservoir K is influential, while the sensitivity to 
the aquitard K increases as the diffusive leakage 
reaches the shallow aquifer. The hydraulic 
conductivity of the leakage pathways––the well 
K and aquitard K at later times––have a positive 
impact, whereas the aquifer and reservoir Ks 
have a negative impact; the higher K dissipates 
and reduces the pressure buildup, except for 
pressures along the leakage pathways.  

 

 
Figure 5. Local sensitivity results for the pressure 

leakage problem. 

In Figure 5(b), however, we can see that the 
reservoir K has a positive effect at the beginning. 
This is because the reservoir K contributes to 
pressure propagation through the system, and the 
higher reservoir K produces faster arrival of the 
pressure buildup at this observation point. The 
reservoir S has a relatively large effect at the 
beginning, since the compressible matrix pores 
absorb the initial pressure increase.  

Morris sensitivity 
Figure 6 shows the mean EE from the Morris 
method. Although the magnitude is different, it 
gives a fairly consistent interpretation compared 
to the local sensitivity method, except that (1) 
the sensitivity to the aquitard S becomes smaller 
relative to the other parameters, and (2) the 
sensitivity to the reservoir S increases at early 
times. This is considered to be an interaction 
effect, since hydraulic conductivity and storativ-
ity have a nonadditive impact on pressure 
buildup. 
 
Figure 7 shows the mean EE of the aquitard K 
and reservoir K at 10 years as a function of the 
number of paths with different numbers of parti-
tions p. As expected, there are considerable 
fluctuations in the estimated EE if only a few 
paths are evaluated. After about 100 paths, the 
estimate appears stabilized. Note that evaluating 
100 paths is generally unfeasible for a computa-
tionally expensive simulation model. Running 

(b) 

(a) 
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fewer paths still provides some useful infor-
mation on the relative importance of a parame-
ter, making the Morris approach a viable tool for 
global sensitivity analysis. 
 
The number of partitions has little impact on the 
mean EE in this case. We note that increasing 
the number of partitions tends to systematically 
reduce mean EE, an effect that requires further 
analysis, but that seems likely to be related to 
the nature of nonlinearity and its evaluation 
using a decreasing perturbation &.  

 

 
Figure 6. Morris sensitivity results for the pressure 

leakage problem. 

 
Figure 7. Mean EE of the aquitard K and reservoir 

K as a function of the number of paths 
with different numbers of partitions p 

Figure 8 shows the crossplot of the mean EE and 
STD for the reservoir K, reservoir S and aquitard 
K with different number of paths (n). The reser-
voir K has a large effect compared to the reser-
voir S and aquitard K. The dots are converged at 
200-400 paths, although 10 paths are enough to 
compare the importance of these three parame-
ters qualitatively; for example, the reservoir K 
has a large mean EE with relatively smaller 

STD. Since SEM decreases as the number of 
paths increases, the line for Mean EE = ± 2SEM 
changes with the number of paths. The effect of 
aquitard K, for example, is not significant with 
n=10 (above the line), but it is significant at 
n=400 (below the line). With the Morris method, 
we can determine whether the effect is signifi-
cant or not, with nonlinearity/interaction effects 
as well as with a limited number of runs.   

 
Figure 8. Mean EE vs. STD for the reservoir K 

(red), reservoir S (blue) and aquitard K 
(light blue) with different number of paths 
(10, 50, 100, 200,400). p = 20. The black 
lines correspond to Mean EE = ± 2SEM.                                                                                                       

CONCLUSIONS 

In this study, we have introduced the new global 
sensitivity analysis (SA) tool of iTOUGH2. We 
have shown that the SA tool can be used not 
only for selecting the important parameters, but 
also for better understanding systems. 
  
Using the reservoir-scale CO2 migration model, 
we compared three SA methods. The results 
showed that the three sensitivity methods give 
similar interpretations and importance rankings, 
except when a parameter has a strong nonlinear 
effect or interacts with some other parameters—
which is the case when a global SA is warranted. 
We have found that the local sensitivity is suffi-
cient in our cases to identify the influential 
parameters. Even for cases with nonlinear or 
interaction effects, the local sensitivity is still 
useful in improving system understanding (e.g., 
the high sensitivity of plume arrival/departure to 
parameters affecting CO2 mobility) and helps 
interpret the results from the Morris or Saltelli 
methods. The Morris sensitivity method 
provides many uses (e.g., it can identify positive 
or negative effects, select influential parameters, 
suggest the presence of nonlinear or interaction 
effects) with relatively small computational 

(a) 

(b) 
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burden. The Saltelli sensitivity method gives 
more rigorous/quantitative sensitivity measures, 
although it is computationally expensive. 
 
With our semi-analytical pressure leakage 
model, we have explored the computational cost 
of the Morris method in more detail, in addition 
to comparing the local and Morris methods. In 
the Morris method, increasing the number of 
partitions did not change the mean EE of param-
eters significantly.  Using the crossplot of mean 
EE and STD, we found that increasing the 
number of paths has a small effect on the estima-
tion of EE, i.e., the relative importance of a 
parameter can be evaluated using a relatively 
small number of simulation runs. The Morris 
method also allows us to tell the significance of 
sensitivity measures (e.g., Mean EE) under non-
linearity or interactions as well as a limited 
number of runs. Finally, this study has shown 
that incorporating global-sensitivity analysis 
methods into iTOUGH2 strengthens the code’s 
overall value as a model development, experi-
mental design, and data analysis tool.  
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